Small serine recombination systems ParA‐MRS and CinH‐RS2 perform precise excision of plastid DNA
نویسندگان
چکیده
Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA-MRS and CinH-RS2, to precisely excise a marker gene from the plastid genome of tobacco. Transplastomic plants transformed with the pTCH-MRS and pTCH-RS2 vectors, containing the visual reporter gene DsRed flanked by directly oriented MRS and RS2 recognition sites, respectively, were crossed with nuclear-genome transformed tobacco plants expressing plastid-targeted ParA and CinH recombinases, respectively. One hundred per cent of both types of F1 hybrids exhibited excision of the DsRed marker gene. PCR and Southern blot analyses of DNA from F2 plants showed that approximately 30% (CinH-RS2) or 40% (ParA-MRS) had lost the recombinase genes by segregation. The postexcision transformed plastid genomes were stable and the excision events heritable. The ParA-MRS and CinH-RS2 recombination systems will be useful tools for site-specific manipulation of the plastid genome and for generating marker-free plants, an essential step for reuse of SMG and for addressing concerns about the presence of antibiotic resistance genes in transgenic plants.
منابع مشابه
Site-specific recombination systems for the genetic manipulation of eukaryotic genomes.
Site-specific recombination systems, such as the bacteriophage Cre-lox and yeast FLP-FRT systems, have become valuable tools for the rearrangement of DNA in higher eukaryotes. As a first step to expanding the repertoire of recombination tools, we screened recombination systems derived from the resolvase/invertase family for site-specific recombinase activity in the fission yeast Schizosaccharom...
متن کاملCoevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nuc...
متن کاملControl of Phage Bxb1 Excision by a Novel Recombination Directionality Factor
Mycobacteriophage Bxb1 integrates its DNA at the attB site of the Mycobacterium smegmatis genome using the viral attP site and a phage-encoded integrase generating the recombinant junctions attL and attR. The Bxb1 integrase is a member of the serine recombinase family of site-specific recombination proteins and utilizes small (<50 base pair) substrates for recombination, promoting strand exchan...
متن کاملMechanisms of site-specific recombination.
Integration, excision, and inversion of defined DNA segments commonly occur through site-specific recombination, a process of DNA breakage and reunion that requires no DNA synthesis or high-energy cofactor. Virtually all identified site-specific recombinases fall into one of just two families, the tyrosine recombinases and the serine recombinases, named after the amino acid residue that forms a...
متن کاملThe Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis
BACKGROUND The mycobacteriophage large serine recombinase Bxb1 catalyzes site-specific recombination between its corresponding attP and attB recognition sites. Previously, we and others have shown that Bxb1 has catalytic activity in various eukaryotic species including Nicotiana tabacum, Schizosaccharomyces pombe, insects and mammalian cells. RESULTS In this work, the Bxb1 recombinase gene wa...
متن کامل